John E. Thomas

John E. Thomas

 $\label{eq:Quark-gluon} \begin{tabular}{ll} Quark-gluon plasma $T=10^{12}$ K \\ Computer simulation of RHIC collision \\ \end{tabular}$

John E. Thomas

"JETLAB" Group

Quark-gluon plasma $T = 10^{12} \, \text{K}$ Computer simulation of RHIC collision

John E. Thomas

"JETLAB" Group

Quark-gluon plasma $T = 10^{12} \, \text{K}$ Computer simulation of RHIC collision

Laser flash photography

John E. Thomas

"JETLAB" Group

Quark-gluon plasma $T = 10^{12} \text{ K}$ Computer simulation of RHIC collision

Laser flash photography

Ultracold atomic gas $T = 10^{-7} K$

Preparation of an Ultracold ⁶Li gas

Preparation of an Ultracold ⁶Li gas

Atoms precooled to 150 µK

Preparation of an Ultracold ⁶Li gas

Atoms precooled to 150 µK

CO₂ Laser Beam

CO₂ Laser Beam

Stable Commercial Laser

140 Watt CO_2 Laser Invisible infrared beam $\lambda = 10.6 \mu m$

CO₂ Laser Beam

Experimental Apparatus

Experimental Apparatus

Experimental Apparatus

Interparticle spacing L becomes the *only* length scale.

Interparticle spacing L becomes the *only* length scale.

A consequence of the Heisenberg Uncertainty Principle

Interparticle spacing L becomes the *only* length scale.

A consequence of the Heisenberg Uncertainty Principle

• Physical Properties, like Energy and Temperature have Natural Units determined by L

Interparticle spacing L becomes the *only* length scale.

A consequence of the Heisenberg Uncertainty Principle

- Physical Properties, like Energy and Temperature have Natural Units determined by L
- Viscosity?

Interparticle spacing L becomes the *only* length scale.

A consequence of the Heisenberg Uncertainty Principle

- Physical Properties, like Energy and Temperature have Natural Units determined by L
- Viscosity?

Interparticle spacing L becomes the *only* length scale.

A consequence of the Heisenberg Uncertainty Principle

- Physical Properties, like Energy and Temperature have Natural Units determined by L
- Viscosity?

Quantum Viscosity Unit

Strongly Interacting Systems in Nature

Strongly Interacting Systems in Nature

Strongly Interacting 6 Li gas $T = 10^{-7} \text{ K}$

Duke, Science (2002)

Strongly Interacting Systems in Nature

Strongly Interacting ⁶Li gas T = 10⁻⁷ K

Duke, Science (2002)

Quark-gluon plasma $T = 10^{12} K$

Strongly Interacting Systems in Nature

Strongly Interacting ⁶Li gas $T = 10^{-7} K$

Duke, Science (2002)

Strongly Interacting Systems in Nature

- Quark-Gluon Plasma
- ❖ High T_c Superconductors
- Neutron Matter
- Black Holes in String Theory

Strongly Interacting ⁶Li gas $T = 10^{-7} K$

Duke, Science (2002)

$$\frac{\text{viscosity}}{\text{entropy}} = \frac{\eta}{s} \ge \frac{1}{4\pi}$$

Kovtun et al., PRL 2005

Resistance to flow—hydrodynamic properties

Kovtun et al., PRL 2005

Resistance to flow—hydrodynamic properties

Kovtun et al., PRL 2005

Disorder—thermodynamic properties

Resistance to flow—hydrodynamic properties

Kovtun et al., PRL 2005

Disorder—thermodynamic properties

Is a Strongly-interacting atomic ⁶Li gas a fluid with the minimum viscosity?

For a *universal* quantum gas, the energy E is determined by the *cloud size* Duke, PRL (2005)

For a *universal* quantum gas, the energy E is determined by the *cloud size* Duke, PRL (2005)

For a *weakly interacting* quantum gas the entropy S can always be determined from the *cloud size* (textbook problem)

For a *universal* quantum gas, the energy E is determined by the *cloud size* Duke, PRL (2005)

For a *weakly interacting* quantum gas the entropy S can always be determined from the *cloud size* (textbook problem)

Experiment

For a *universal* quantum gas, the energy E is determined by the *cloud size* Duke, PRL (2005)

For a *weakly interacting* quantum gas the entropy S can always be determined from the *cloud size* (textbook problem)

Experiment

Start
Universal strongly
Interacting

For a *universal* quantum gas, the energy E is determined by the *cloud size* Duke, PRL (2005)

For a *weakly interacting* quantum gas the entropy S can always be determined from the *cloud size* (textbook problem)

Experiment

Start
Universal strongly
Interacting

Sweep magnetic field

Duke, PRL (2007)

End Weakly interacting

Critical temperature for the *superfluid transition* = 0.20 (natural units)

Measuring Viscosity from the expansion of a rotating gas

Measuring Viscosity from the expansion of a rotating gas

Measuring Viscosity from the expansion of a rotating gas

Measure the angle of the cloud

Measure the angle of the cloud

Measure the *angle* of the *long* axis of the rotating cloud with respect to the laboratory axis

Rotates *faster* as it *expands*— *opposite* to the behavior of an ice-skater!

• Superfluid, $\Omega_0 = 178 \text{ rad/s}$

- Superfluid, $\Omega_0 = 178 \text{ rad/s}$ Normal Fluid, $\Omega_0 = 178 \text{ rad/s}$

Theory—superfluid flow

• Superfluid, $\Omega_0 = 178 \text{ rad/s}$

• Normal Fluid, $\Omega_0 = 178 \text{ rad/s}$

Theory—superfluid flow

• Superfluid, $\Omega_0 = 178 \text{ rad/s}$

• Normal Fluid, $\Omega_0 = 178 \text{ rad/s}$

Theory—superfluid flow

• Superfluid, $\Omega_0 = 178 \text{ rad/s}$

• Normal Fluid, $\Omega_0 = 178 \text{ rad/s}$

The 2008 Team

The 2008 Team

The 2008 Team

1st row:
Willie Ong
Chenglin Cao
James Joseph
Yingyi Zhang
Le Luo
Dave Weisberg

2nd row:
Ethan Elliot
John Thomas
Xu Du

3rd row:
Jessie Petricka
Bason Clancy